Function Classes That Approximate the Bayes Risk

نویسندگان

  • Ingo Steinwart
  • Don R. Hush
  • Clint Scovel
چکیده

Many learning algorithms approximately minimize a risk functional over a predefined function class. In order to establish consistency for such algorithms it is therefore necessary to know whether this function class approximates the Bayes risk. In this work we present necessary and sufficient conditions for the latter. We then apply these results to reproducing kernel Hilbert spaces used in support vector machines (SVMs). Finally, we briefly discuss universal consistency of SVMs for non-compact input domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Discriminative Densities from Maximum Contrast Estimation

We propose a framework for classifier design based on discriminative densities for representation of the differences of the class-conditional distributions in a way that is optimal for classification. The densities are selected from a parametrized set by constrained maximization of some objective function which measures the average (bounded) difference, i.e. the contrast between discriminative ...

متن کامل

Estimating a Bounded Normal Mean Under the LINEX Loss Function

Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...

متن کامل

Computing Approximate Equilibria in Graphical Games on Arbitrary Graphs

We present PureProp: a new constraint satisfaction algorithm for computing pure-strategy approximate Nash equilibria in complete information games. While this seems quite limited in applicability, we show how PureProp unifies existing algorithms for 1) solving a class of complete information graphical games with arbitrary graph structure for approximate Nash equilibria (Kearns et al., 2001; Ort...

متن کامل

Estimation of Scale Parameter Under a Bounded Loss Function

     The quadratic loss function has been used by decision-theoretic statisticians and economists for many years.  In this paper  the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006